Ma

Mathematics tests

Mark scheme for Paper 1

Tiers 3-5, 4-6, 5-7 and 6-8
2002

KEY STAGE 3

ALL TIERS

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 and the extension paper mark schemes are printed in separate booklets. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 11 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The 'Correct response' column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common and the minimum acceptable.

The 'Additional guidance' column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance, relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the 'Correct response' } \\ \text { column. Refer also to the additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a 'slip' such as writing } 4 \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by 2 rather than 20 when calculating 35 } \times 27 \text {; subtracting the }\end{array}\right\}$

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed (or rubbed) out and not replaced.	Mark, according to the mark scheme, any legible crossed (or rubbed) out work that has not been replaced.	
More than one answer is given.	If all answers given are correct (or a range of answers is given, all of which are correct), the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20 \quad$ f7	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20(p), f 320, £ 3,20$, 3 pounds 20, $£ 3-20$, £ 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320p, 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 eg $£ 3.2, £ 3$ 200, $£ 320$, £3-2-0, £7.0

Responses involving time A time interval For example: 2 hours 30 mins	
Accept $\sqrt{ }$	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie $2: 30$	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept $\sqrt{ }$	Do not accept \times
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, 8-40, twenty to nine, $8,40$ \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: (5,7)

Accept \checkmark	Do not accept \times
```\checkmark ~ U n a m b i g u o u s ~ b u t ~ u n c o n v e n t i o n a l ~ notation eg (05,07) (five, seven ) (  (x=5, y=7)```	x Incorrect or ambiguous notation eg $(7,5)$ ( $5 x, 7 y$ ) $(x 5, y 7)$ $\left(5^{x}, 7^{y}\right)$

## Responses involving the use of algebra

For example: $2+n \quad n+2 \quad 2 n$

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ The unambiguous use of a different case   eg $N$ used for $n$   $\checkmark$ Unconventional notation for multiplication   eg $n \times 2$ or $2 \times n$ or $n 2$ or $n+n$ for $2 n$ $n \times n$ for $n^{2}$   $\checkmark$ Multiplication by 1 or 0   eg $2+1 n$ for $2+n$ $2+0 n$ for 2   $\checkmark$ Words used to precede or follow equations or expressions   eg $t=n+2$ tiles or tiles $=t=n+2$   for $t=n+2$   $\checkmark$ Unambiguous letters used to indicate expressions $\text { eg } \quad t=n+2 \text { for } n+2$   $\checkmark$ Embedded values given when solving equations $\text { eg } \begin{aligned} & 3 \times 10+2=32 \\ & \\ & \text { for } 3 x+2=32 \end{aligned}$	! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own   eg do not accept $n \text { tiles }+2$ $n \mathrm{~cm}+2$   x Change of variable   eg $x$ used for $n$   $\times$ Ambiguous letters used to indicate expressions $\text { eg } n=n+2$   However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.   $\times$ Embedded values that are then contradicted eg for $3 x+2=32$, $3 \times 10+2=32, x=5$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

For example: 0.7

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   Equivalent decimals, fractions or percentages eg $0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 $\text { eg } \quad \frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10 , 7 out of 10, 7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio eg 7:10, $7: 3,7$ to 10   $\times$ A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5, 4-6, 5-7 and 6-8. The extension paper carries 42 marks.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental arithmetic paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website (www.qca.org.uk) from Wednesday, 26 June 2002. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the External Marking Agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

The 2002 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

## BLANK PAGE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Tier \& Question} \& \& \& \& \multirow[t]{2}{*}{Half} <br>
\hline 3-5 \& 4-6 \& 5-7 \& 6-8 \& \& \& \& <br>
\hline 1 \& \& \& \& \& Correct response \& Additional guidance \& <br>

\hline \& \& \& \& 1m \& \begin{tabular}{l}
Both correct, ie <br>
more than half $\square$
$\square$
<br>
half

\end{tabular} \& \& <br>

\hline
\end{tabular}

Tier	Question			Robot
2			Correct response	Additional guidance
a		1 m	Correct diagram, ie	$\checkmark$ Unambiguous indication eg   ! Arrows incorrect or omitted Ignore
b		1m	A correct route, showing 2 Norths and 1 East eg   - North   North   East   - N   E   N   - East   N   N	$\checkmark$ Identical steps combined   eg, in part (b)   - Move 2 m north, then 1 m east   ! Other compass points used eg, in part (b)   - North-east   East   West-north   Penalise only the first occurrence   ! More than the specified number of steps
c		1m	A different correct route, also showing 2 Norths and 1 East	Do not accept in part (d). Otherwise penalise only the first occurrence, unless this error occurs alongside the error given above (other compass points used) in which case ignore   ! Follow through from part (b) to part (c) If the compass directions in part (b) are incorrect, accept the same directions used in part (c) but in a different order eg, from part (b) as $\mathrm{W}, \mathrm{N}, \mathrm{N}$
d		1m	A correct route, showing one step in any direction and its inverse eg   - North   South   - W   E	- $\begin{array}{r}\mathrm{N} \\ \mathrm{W} \\ \mathrm{N}\end{array}$   $\times$ Compass directions not specified   Do not accept the route shown only by lines on the diagram, or other ways of specifying directions   eg   - Forward   Right   Forward



Tier \& Question		Olympic Games		
3-5 4-6	5-7 $6-8$			
4			Correct response	Additional guidance
		$\begin{gathered} 3 \mathrm{~m} \\ \text { or } \\ 2 \mathrm{~m} \end{gathered}$   or   1m	Shows or implies correct totals of 131 and 28 and the intention to subtract, even if the notation is incorrect   eg   - $41+43+47=131,11+10+7=28$   $131-28=117$ (error)   - $28-131=117$ (error)   - 117 given as the answer   or   Shows or implies correct differences of 30, 33 and 40 and the intention to add eg $\begin{aligned} & \text { - } 41-11=30,43-10=33,47-7=40 \\ & 30+33+40 \end{aligned}$   or   Shows a complete correct method with not more than one error, that is followed through correctly to an answer eg   - $41+43+47=132$ (error), $132-28=104$   - $30+23$ (error) $+40=93$   Shows the totals 131 and 28 or   Shows the differences 30 and 33 and 40 or   Shows a complete correct method with not more than two errors	! Intention to subtract not explicit Accept implicit intention to subtract eg   - 131 and 28 seen, with 102 given as the answer   ! Intention to add not explicit Accept implicit intention to add eg   - 30, 33 and 40 seen, with 113 given as the answer   ! Method not explicit   Accept implicit methods   eg   - 121 (error) and 28 seen, with 93 given as the answer but no other working shown


Tier \& Question						Pictogram key
3-5	4-6	5-7 6	6-8			
5					Correct response	Additional guidance
				$2 \mathrm{~m}$   or   1m	Correct for both male and female, ie 2 circles for male, $1 \frac{1}{2}$ circles for female   Correct for either male or female	! Drawings not accurate or the same size, or the half circle is not closed Accept provided the pupil's intention is clear   ! Symbol other than circle used to represent 4 people Do not accept multiple symbols, eg circles and squares used. However, if the only error is to use a different symbol consistently for both male and female, mark as 1,0


Tier \& Question				Two steps		
3-5	4-6 5	5-7	6-8			
6					Correct response	Additional guidance
a				$1 \mathrm{~m}$ $1 \mathrm{~m}$	$40$ $46$	
b				1m	$12$	! Units given   Ignore   eg, accept   - 12 cm   ! Step size shown on diagram   Accept if unambiguous, but do not accept incorrect further working   eg, do not accept   - 12 shown correctly on the diagram, but 24 given as the answer   ! Both step sizes shown   Accept if unambiguous   eg, accept   - 12, 12   - 12 and 12   Do not accept if ambiguous   eg   - $12+12$


Tier \& Question						Calculations
3-5	4-6 5	5-7 6	6-8			
7					Correct response	Additional guidance
				2m   or   1m	All four decisions correct, ie   Any three correct decisions or   Both crosses are left blank, ie	



Tier \& Question							Signs
3-5	4-6	5-7 6	6-8				
9	2				Correct response	Additional guidance	
				$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 5+2=10-3 \\ & 12-3=3 \times 3 \\ & 2+1=9 \div 3 \\ & 6-6=7-7 \\ & \text { or } \\ & 6 \div 6=7 \div 7 \end{aligned}$	$\checkmark$ Other correct signs eg, for the first mark   - $5++2=10+-3$   eg, for the first mark   - $6 \div-6=7 \div{ }^{-7}$	


Tier \& Question					Angles
3-5		5-7 6-8			
10	3			Correct response	Additional guidance
a	a		1 m	Indicates 'acute', ie $\square$ $\square$ $\square$ $\square$	
b	b		1 m	Indicates 'No' and gives a correct explanation   The most common correct explanations:   State the angles are the same eg   - They are both $45^{\circ}$   - They both have the same amount of turn   - The first diagram is an enlargement of the second diagram   - Angle B fits onto angle A exactly   - They are the same, you just see more of A   Address the misconception   eg   - It's how much turn, not how long the lines are   - Just because the arms are longer it doesn't make it bigger	! Angles measured Accept as $45 \pm 2^{\circ}$ provided both angles are the same, but do not accept incorrect measurements eg, do not accept   - Both are $45^{\circ}$ or $135^{\circ}$   $\checkmark$ Minimally acceptable explanation eg   - They are the same   $\checkmark A$ and $B$ used to refer to the diagram rather than the angle   eg   - If you enlarge B it is the same as A   ! Response refers to the squares   Accept if there is unambiguous reference to the angles   eg   - They both go through the diagonal Do not accept if ambiguous eg   - They both have the same number of squares within them (could be referring to area)   $\checkmark$ Minimally acceptable explanation   eg   - It's just that the lines are longer   - Because one is smaller in size doesn't mean the angle is smaller   $\checkmark$ Implicit reference to the length of the lines eg   - B is a bit smaller but it's the same angle   - A has been drawn bigger than B


Tier \& Question					Factors
11	4			Correct response	Additional guidance
a	a		2 m   or 1 m	All five correct factor pairs, in any order, with none duplicated or incorrect eg $\begin{aligned} & 1,16 \\ & 2,8 \\ & 4,4 \\ & 8,2 \\ & 16,1 \end{aligned}$   At least three factor pairs correct	
b	b		2 m   or   1m	All correct, ie   (6)   (12)   At least four correct and none incorrect or   At least five correct and not more than one incorrect   or   Identifies all numbers that are not factors of 12 , ie $\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \end{array}$	


Tier \& Question					Thinking of rules
3-5		5-7 $6-8$			
12	5			Correct response	Additional guidance
a	a		$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	12   3   Correct response eg   - Add 6   - +6   - $\times \frac{3}{2}$   - Add the number you first thought of	$\checkmark$ Multiple steps   eg, for the first rule   - 2, then add another 10   - 3 , then $\times 2$   ! The starting value of 6 is repeated Ignore if inserted before the given operation eg, accept   - first rule: 6 add 12   If 6 is inserted immediately after the given operation, penalise only the first occurrence eg   - first rule: add $6+12$   Do not accept 6 repeated after their rule eg   - first rule: add $12+6$   $\times$ For the third rule, the operation is not specified   eg   - 6
b	b		1m	Gives a correct rule eg   - Divide by 2   - $\div 2$   - Halve the first number   - Take half of the first number away	! Embedded rule   Accept provided both calculations are shown and use the same rule   eg   - $10 \div 2$ and $8 \div 2$   $\checkmark$ Use of 'half' for halve   eg   - Half   $\times$ Incorrect rule   eg   - $-\frac{1}{2}$   $\times$ Inverse rule   eg   - Double   $\times$ Result used to define the rule   eg   - Take the smaller number away from the bigger   - $10-5=5,8-4=4$


Tier \& Question						Car parking
3-5	4-6	5-7 6	6-8			
13	6				Correct response	Additional guidance
				$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	75 p   Shows a correct multiplicative method even if there are computational errors eg   - $15 \div 8 \times 40$   - $40 \div 8 \times 15$   - $15 \times 5$   - $15 \times 10 \div 2$   or   Shows a correct additive method with not more than one computational error eg	


Tier \& Question						Heights
3-5	4-6	5-7	6-8			
14	7				Correct response	Additional guidance
a	a			1m	1.2(0)	$\checkmark$ Correct height in centimetres, with units given
b	b			1 m	1.15	
c	c			1 m	170	$\times$ Height in metres


Tier \& Question				Spinning		
3-5	4-6	5-7	6-8			
15	8	1			Correct response	Additional guidance
a	a	a		1 m $1 \mathrm{~m}$	Gives a correct probability eg   - $\frac{1}{4}$   - $\frac{2}{8}$   - $25 \%$   Gives a correct probability eg   - 1   - $100 \%$	$\checkmark$ Equivalent fractions   eg   - $\frac{8}{8}$   - $\frac{1}{1}$   ! Probability not quantified   Ignore descriptors alongside correct probabilities, but do not accept on their own eg, do not accept   - Certain   - Definite
b	b	b		$2 \mathrm{~m}$   or   1m	Shows exactly two fours, exactly two even numbers other than four, and any two odd numbers eg   Shows exactly two fours or   Shows exactly four even numbers, even if the other two entries are left blank	! Use of zero   Note zero is defined as an even number


Tier \& Question					Interpreting algebra
3-5	4-6	5-7 6	6-8		
16	9	3		Correct response	Additional guidance
			1m	Gives a correct interpretation, by referring to at least 3 of the 4 aspects listed below   1. The meaning of $a$ and $b$ (eg by using Ann and Ben, or A and B)   2. The meaning of the + and $=$ signs (eg by using key words such as 'sum of' or 'total' or 'altogether' or 'add')   3. The value 69   4. The given context (eg by referring to age or years)   eg, accept   - The sum of the ages of Ben and Ann is 69 (all aspects shown)   - Altogether A and B are 69 years old (all aspects shown)   - Altogether, $a$ and $b$ are 69 years old (1 $1^{\text {st }}$ aspect missing)   - Ann's + Ben's age $=69$ ( $2^{\text {nd }}$ aspect missing)   - The sum of the ages of A and Ben (3 ${ }^{\text {rd }}$ aspect missing)   - Together, Ann and Ben are 69 (4th aspect missing)	! Ben's age taken to be 30   Accept Ann's age unambiguously shown as 39 , with reference to both the meaning of $a$ and the given context   eg, accept   - Ann is 39 years old   - A's age $=39$   - A is 9 years older than B   In English, ages are commonly referred to without years, so also accept the following   - A is 39   However, do not accept other responses that do not refer to both the meaning of $a$ and the given context   eg   - $\mathrm{Ann}=39$   Also, do not accept incorrect computation eg   - Ann is 29 years old
			1m	Gives a correct interpretation, by referring to the given context (eg by referring to age or years) and at least 1 of the 2 aspects listed below   1. The meaning of $b$ and $c$ (eg by using Ben and Cindy, or B and C)   2. The meaning of the ' 2 ' or ' $2 \times$ ' (eg by using key words such as 'twice' or 'half' or 'two times')   eg, accept   - Ben is twice as old as C   - C is half B's age   - B is twice C's age   - $b$ is twice $c$ 's age ( $1^{\text {st }}$ aspect missing)   - $\mathrm{B}=2 \times$ C's age (2 $2^{\text {nd }}$ aspect missing)	! Ben's age taken to be 30   Accept Cindy's age unambiguously shown as 15 , with reference to both the meaning of $c$ and the given context, and applying the additional guidance as given in part (a)


Tier	\& Que		Interpreting algebra (cont)		
16	9	3		Correct response	Additional guidance
			1m	Gives a correct interpretation by referring to the mean   and either the given context, or 28 , or both eg   - The mean age of Ann, Ben and Cindy is 28   - 28 is the mean age   - 28 is the mean   (no reference to the given context)   - The mean age (no reference to 28)   or   Gives a correct interpretation by referring to the total of 84   and the given context   eg   - The total age of Ann, Ben and Cindy is 84   - 84 is the sum of their ages   or   Gives a correct interpretation, by referring to the given context and the denominator of 3 (eg by showing $\div 3$ ) and at least 2 of the 3 aspects listed below   1. The meaning of $a, b$ and $c$ (eg by using Ann, Ben and Cindy, or A, B and C, or by using inclusive key words such as 'their' or, minimally, 'the')   2. The meaning of the + signs (eg by using key words such as 'sum of' or 'total' or 'altogether' or 'add')   3. The value 28   eg, accept   - The sum of their ages divided by 3 is 28   - Add A's age to B's age to C's age then divide by 3 gives the answer 28   - Their total age $\div 3$ is 28   - The ages of $\mathrm{A}+\mathrm{B}+\mathrm{C}$, then divide by three equals 28 (2 ${ }^{\text {nd }}$ aspect missing)   - Add up the ages then divide by 3 (3 ${ }^{\text {rd }}$ aspect missing)	$\checkmark$ Use of ‘average’ for mean   $\times$ Partial or incorrect processing eg   - The total of their ages is $3 \times 28$   - $3 \times 28=82$ (error) which is the sum of their ages   ! Ambiguity as to whose age is divided by 3 Pupils who reproduce the statement in the order shown can introduce ambiguity Do not accept such responses eg, accept   - (Ann + Ben + Cindy's age) $\div 3=28$   - Ann + Ben + Cindy's ages $\div 3=28$   eg, do not accept   - Ann + Ben + Cindy's age $\div 3=28$   - Ann's + Ben's + Cindy's age $\div 3=28$   ! Ben's age taken to be 30   Ignore if accompanying a correct response, otherwise do not accept eg, do not accept $\because(39+30+15) \div 3=28$   ! Within the question, two equations solved correctly but with no credit given eg $a=39, c=15$   Mark as $0,0,1$



Tier \& Q		Halfway		
1811	41	1	Correct response	Additional guidance
a	a	1 m   1m	9.2 or equivalent value $24$	
b	b	$\begin{gathered} 2 \mathrm{~m} \\ o r \\ 1 \mathrm{~m} \end{gathered}$	Shows a correct efficient method eg   - $30 \times 38$   or   Shows both 1026 and 1254   or   Shows one of 1026 or 1254, but makes error(s) when finding the other value, then follows through correctly to give a final answer eg ```- \(27 \times 38=1026,33 \times 38=1354\) (error) \(1026+1354=2380\) \(2380 \div 2=1190\) - \(27 \times 38=926\) (error) \(1254-926=328\) \(328 \div 2=164\) \(926+164=1090\) - \(1026 \div 2=513\) 1250 (error) \(\div 2=625\) \(513+625=1138\) - \(27 \times 38=1034\) (error), \(33 \times 38=1254\) \(1034+220=1254\) \(1034+110=1144\)```	! $30 \times 38$ or 1140 seen in the working Note that some pupils show $30 \times 38$ or 1140 as part of their calculation of $33 \times 38$ eg $\begin{aligned} & 30 \times 38=1140 \\ & 3 \times 38=114 \\ & 1140+114 \end{aligned}$   Do not accept as evidence of a correct efficient method   ! Their incorrect value is odd Accept rounding or truncation to an integer value   eg $\begin{aligned} & 27 \times 38=1023 \text { (error), } 33 \times 38=1254 \\ & 1023+231=1254 \\ & 1023+115=1138 \end{aligned}$


Tier \& Question				Survey		
3-5	4-6	5-7	6-8			
19	12	5			Correct response	Additional guidance
a	a	a		1 m	English	$\checkmark$ Unambiguous indication   eg, for English   - 2   eg, for Maths   - 7
b	b	b		1m	Maths	
c	c	c		1 m	Gives a correct explanation   The most common correct explanations:   Calculate the percentages to show they are different   eg   $30 \%$ for boys, but only $15 \%$ for girls   Show that the totals are different eg   - It's 3 out of 10 for boys but 3 out of 20 for girls   - There are more girls so it's a smaller percentage   - The total for girls is 20 , but for boys it is 10   - There are twice as many girls as boys   - Take the boys to be $100 \%$, then the girls will be $200 \%$	$\times$ Percentages calculated incorrectly   $\times$ Incomplete explanation   eg   - The percentages are different for boys and girls   $\checkmark$ Minimally acceptable explanation   eg   - There are more girls   - It's out of different numbers   - It depends on how many boys and girls there are   - You need to look at the percentage, not just the number   - The percentage for boys is higher   - There are 10 boys and 20 girls (implicit comparison)   $\times$ Incorrect explanation accompanying a correct statement   eg   - Because he asked 20 girls and 10 boys and that is not a fair thing to do in a survey   - There are more girls than boys so girls (error) have a bigger percentage than the boys   - There are 10 boys and 20 girls so it couldn't be equally popular   $\times$ Incomplete explanation   eg   - The total for girls is 20
d	d	d		1 m	English	


Tier \& Question						Solving
3-5	4-6 5	5-7 6	6-8			
20	15	6	2		Correct response	Additional guidance
a	a	a		$2 \mathrm{~m}$   or $1 \mathrm{~m}$	All three correct, ie 23   20   33   Any two correct	$\times$ Incorrect notation eg   - $23 x$ for 23
b	b	b		$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	3   Subtracts 11 from both sides to give a correct algebraic equation eg   - $2 y=17-11$   - $2 y+11-11=17-11$   - $2 y=6$	! Ambiguous notation eg - $\times 3$   Mark as 1,0
	c	c		$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Correct value   eg   - $2 \frac{1}{2}$   - $\frac{5}{2}$   - 2.5   Collects together like terms eg   - $9 y-5 y=13-3$   - $4 y=10$   - $y=10 \div 4$   or   Shows working in which the only error is to add, rather than subtract, 3 to the right-hand side, resulting in the solution $y=4$   eg   - $9 y+3=5 y+13$ so $4 y=16 \text { (error) so } y=4$   or   Shows working in which the only error is to add, rather than subtract, $5 y$ to the left-hand side, resulting in the solution $y=\frac{5}{7}$, or equivalent fraction or decimal between 0.71 and 0.72 inclusive   eg   - $\begin{aligned} & 9 y+3=5 y+13 \\ & 14 y(\text { error })=10 \text { so } y=\frac{10}{14}\end{aligned}$	$\checkmark$ Equivalent fraction or decimal   eg   - $2 \frac{2}{4}$   - $\frac{10}{4}$   $\times$ For $2 m$, incomplete processing   eg   - $10 \div 4$   $\times$ Simplified expressions which are not equated   eg   - $9 y-5 y=4 y$   $13-3=10$   ! Method used is trial and improvement Note that no partial credit can be given Also note that the correct solution must be explicitly stated rather than embedded eg, do not accept   - $5 \times 2.5+13=9 \times 2.5+3$ without 2.5 identified as the solution


\|Tier \& Q	5-7 6 -8	Dropping litter		
13	73	3	Correct response	Additional guidance
a	a a	1 m	Gives a correct reason   The most common correct reasons are:   The sample size is too small eg   - They should ask more than 10   - Not enough people   - 10 is too small, he should ask 100   People might not respond honestly eg   - They might be embarrassed so won't be honest   - They will lie   - They are not likely to admit to it   - They might ignore the pupils   People might not remember   eg   - They might not remember doing it   People might not be consistent   eg   - They might only drop it on some days so they would say they don't drop it every day   - They might not drop it every day but still drop it sometimes   The sampling method may lead to bias eg   - They might only ask people in a clean area with not much litter   - He might only ask young people   Gives a correct reason from a different category to one already credited	$\checkmark$ Question would be difficult to answer   eg   - No-one would know if they did drop it every day   $\checkmark$ Implicit reference to the sample size being too small   eg   - Those 10 might not drop litter but others might   - Those people might not have any litter to drop   $\times$ In part (a) or part (b), conceptual misunderstanding   The most common of these imply that everyone in the country should be asked, or that the figure of $93 \%$ must be proved exactly, or that the exact conditions applied by the newspaper must be replicated, or that you should select the people being surveyed according to the desired outcome   eg   - 10 people is not all of us   - There are a lot more than 10 people in England   - It is not possible to get a figure of $93 \%$ with only 10 people   - 10 is too difficult, he should ask 100   - You don't know how many people the newspaper asked   - You might ask the wrong people   ! In part (a) or part (b), more than one reason given within one response Do not accept a correct response accompanied by an incorrect response from the same category. Otherwise ignore irrelevant or incorrect further responses. If two correct reasons from different categories are given in the first response space, both marks should be awarded



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{$$
\begin{array}{|c|}
\hline \text { Tier \& Question } \\
\hline 3-54-65-7 \mid 6-8 \\
\hline
\end{array}
$$}} \& \& \& Negatives <br>
\hline \& \& 6-8 \& \& Correct response \& Additional guidance <br>
\hline \& \& \& 1 m

1 m \& \begin{tabular}{l}
Gives two negative numbers, the second of which is 5 less than the first eg
$\square$ $-13$
$\square$ <br>
$-1$ -6 <br>
Gives two negative numbers, the second of which is 5 more than the first eg
$\square$ <br>
-6 $\square$ -1 <br>
- $\square$
$$
-15
$$

 \& 

$\times$ Zero used as a negative <br>
eg <br>
-0 <br>
! Incorrect notation <br>
eg <br>

- 15 - <br>
Penalise only the first occurrence <br>
! Neither calculation is correct but the numbers used in the second set of boxes are the same as in the first set, but in reverse order <br>
If all the numbers are negative, mark as 0,1 eg <br>
- -7 then -3 in the first, <br>
-3 then -7 in the second
\end{tabular} <br>

\hline
\end{tabular}

Tier \& Qu		Puzzle		
16	9		Correct response	Additional guidance
		2m	Writes three correct algebraic expressions, the first two of which may be unsimplified   eg, for the first box   - $2 n+4$   - $n+4+n$   eg, for the second box   - $n+2$   - $(2 n+4) \div 2$   eg , for the third box   - $n$   Writes correct algebraic expressions for the first two boxes, even if unsimplified   or   Writes correct algebraic expressions for the last two boxes and fully simplifies, indicating that the pupil has worked upwards   eg $\begin{aligned} & n+9 \text { (error) } \\ & n+2 \\ & n \end{aligned}$   or   Within an otherwise correct response, the only error is in the notation for the expression for the second box   eg   - $2 n+4$   $2 n+4 \div 2$ (error in notation only)   $n$   or   The expression for the first or second box is incorrect, but is then followed through correctly including full simplification of the expression for the third box eg   - $n+9$ (error)   $\frac{n+9}{2}$   $\frac{n+5}{2}($ or $0.5 n+2.5)$   - $2 n+4$   $n+4$ (error)   $n+2$	! Expression for the third box not fully simplified Given the context of the question, this expression must be simplified at least as far as $n+2-2$ or $\frac{2 n}{2}$   eg, do not accept $\text { - } \frac{2 n+4}{2}-2$   $\times$ For $2 m$, incorrect algebraic notation eg, for the second box   - $2 n+4 \div 2$   eg $\begin{aligned} & n+9 \text { (error) } \\ & \frac{n+9}{2} \\ & \frac{n+9}{2}-2=n(\text { error }) \end{aligned}$


Tier \& Question					Rectangle rest
3-5	4-6 5-7	6-8			
	10	6		Correct response	Additional guidance
	a	a	$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Calculates, or shows on the diagram, that the other acute angle in the white triangle is 40 eg   - $180-60=120$,   $120+20=140$,   $180-140=40$   or   Shows a complete correct method with not more than one computational error eg   - $180-(20+120)=50$ (error), $90-50=40$   - $20+90=110$,   $110-60$   - $180 \div 3=60$,   $60-20=50$ (error) $180-90-50=40$	$\times 40$ seen without being located on the diagram or without supporting working
	b	b	$\begin{array}{\|c} \hline 2 \mathrm{~m} \\ \\ \\ \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	Gives a correct justification eg   - $\angle \mathrm{DEB}$ is $120(180-60)$, $\angle \mathrm{EBD}$ is $30(180-90-60)$, so $\angle \mathrm{BDE}$ is $30(180-120-30)$   As $\angle \mathrm{BDE}=\angle \mathrm{EBD}$ then triangle BDE is isosceles   Shows working to justify that $\angle \mathrm{DBE}$ is 30 eg $180-(90+60)=30$	$\checkmark$ Minimally acceptable justification eg   - Angle at $\mathrm{B}=180-90-60=30$, so the angles in the triangle are $120,30,30$   $\times$ For $2 m$ or 1m, angle of 30 not justified, or justified only by assuming the triangle is isosceles   eg   - The angles in triangle BDE are 30, 30 and 120   - $180-60=120,180-120=60$, $60 \div 2=30$


Tier \& Question			Mice		
3-5 4-6	5-7 6	6-8			
17	11	7		Correct response	Additional guidance
a	a	a	1 m	$50 \pm 2$	
b	b	b	1m	$55 \pm 2$	
c	c	c	1m	Indicates 'No' and gives a correct explanation   The most common correct explanations:   Refer to the fact that the number of mice is unknown   eg   - It's only percentages, the real data is not shown   - You need to know the actual numbers   - It may be out of different amounts of mice   - There may be more mice in homes close to woodland   Refer to the limitations of percentage bar charts   eg   - The charts only allow you to compare the proportions	$\checkmark$ Indicates 'Yes' and qualifies their decision by stating the assumption needed eg   - Provided the total number of mice is about the same   $\checkmark$ Minimally acceptable explanation   eg   - They've used \% so you can't tell   - They only show the percentage   - You don't know how many mice were found altogether   ! Explanation specifies which location gets more mice   The explanation must be the correct way round, ie   eg, do not accept   - There may be more mice in homes far from woodland   ! Explanation refers to number of homes or people, rather than number of mice   Condone these errors   eg, accept   - It may be out of different amounts of homes   - They might have asked different amounts of people who lived close to or far from woodland   ! Irrelevant explanation   If accompanied by a correct explanation, ignore   eg, accept   - There may be more mice close to woodland or the homes could be dirtier   ! Explanation interprets the percentages in terms of probability, or states that the percentages may not be accurate eg   - It doesn't mean there must be more, just that it is more likely   - There could be more mice that weren't found   Ignore if accompanying a correct response, otherwise do not accept


Tier \& Question				Marking overlay available		Straight lines
3-5	4-6 5	5-7 6	6-8			
	181	12	8		Correct response	Additional guidance
		a	a	1m	Indicates 'Yes' and gives a correct explanation eg   - When $x=25,3 x=75$   - $3 \times 25=75$   - $y$ must be $3 \times x$	$\checkmark$ Explanation does not explicitly state that the line goes through the origin   eg   - $(2.5,7.5)$ is on the line and you can times them both by 10   - The line goes up three for every one it goes across   - $25 \div 25=1,75 \div 25=3$ and $(1,3)$ is on the line   $\checkmark$ Minimally acceptable explanation   eg   - $y=3 \times x$   - You multiply the number on the $x$-axis by three   $\times$ Equation restated but not interpreted   eg   - $y=3 x$   $\times$ Incomplete explanation   eg   - It goes $(1,3),(2,6)$ and so on   - $(2.5,7.5)$ is on the line
		b	b	$\begin{gathered} 3 \mathrm{~m} \\ \\ \text { or } \\ 2 \mathrm{~m} \end{gathered}$	$\left(2 \frac{1}{2}, 11\right)$   Shows $x=2 \frac{1}{2}$ or $y=11$   or   Shows a complete correct method for solving algebraically with not more than one error eg   - $4 x+1=6 x-4$ so 3 (error) $=2 x$ $x=1.5 \text { so } y=4 \times 1.5+1=7$   - $y-4 x=1, y-6 x=-4$, so $2 x=3$ (error), so $x=1.5$ and $y=6 \times 1.5-4=5$   - $3 y=12 x+3$   $2 y=12 x-8$   $y=-5$ (error)   $-5=4 x+1$ so $x=-1.5$   or   For at least 4 cm , draws both lines on the graph within the tolerance as shown on the overlay	$\checkmark$ Equivalent fraction or decimal


Tier \& Question			Marking overlay available		Straight lines (cont)
3-5	4-6 5-7	6-8			
	12	8		Correct response	Additional guidance
	b	b	$\left.\begin{gathered} o r \\ 1 \mathrm{~m} \\ \text { cont } \end{gathered} \right\rvert\,$	Shows $4 x+1=6 x-4$ or equivalent   or   Attempts to solve simultaneously and forms two correct equations that would allow elimination of $x$, or subtracts the two given equations to eliminate $y$   eg   - $3 y=12 x+3$   $2 y=12 x-8$   - $6 y=24 x+6$   $4 y=24 x-16$   - $0=2 x-5$   or   Indicates, on the graph or elsewhere, at least two correct points on each of the lines   or   Draws one line on the graph within the tolerance as shown on the overlay, and at least of length 4 cm	
	c	c	1m	Gives a correct explanation   eg   - Both have gradient of $\frac{1}{2}$ but they pass through $(0,3)$ and $(0,5)$   - Same gradient, different intercepts   - The lines are parallel but are not the same   or   Gives a correct algebraic interpretation eg   - $\frac{1}{2} x+3 \neq \frac{1}{2} x+5$ because $3 \neq 5$   - The difference will always be 2   - No matter what value you put in for $x$, the $y s$ will never be the same	$\checkmark$ Implicit assumption that the lines are different   eg   - Both have gradient of $\frac{1}{2}$   - Same slope   - The lines are parallel   $\checkmark$ Minimally acceptable explanation   eg   - The equations are the same except for the 3 and the 5   - The second line will always be higher   × Incomplete or no interpretation   eg   - Because the lines do not cross   - Different intercepts   - Because of the +3 and the +5   - They have the same number of $x$   - Both have $\frac{1}{2}$   - The difference is 2   $\times$ One value only considered   eg   - When $x=10$, in the first line $y=8$ but in the second line $y=10$


Tier \& Question						Egyptians
3-5	4-6	5-7	6-8			
	19	13	9		Correct response	Additional guidance
	a	a	a	1m	$\frac{7}{10}$ or equivalent fraction	$\times$ Incorrect notation or incorrect further working eg   - $\frac{31 / 2}{5}$
	$\begin{array}{\|l} \mathrm{a} \\ \text { or } \\ \mathrm{b} \end{array}$		$\left\lvert\, \begin{gathered} \mathrm{a} \\ \text { or } \\ \mathrm{b} \end{gathered}\right.$	1m	In part (a) or (b), shows a correct method that enables addition or subtraction of fractions   The most common correct methods:   Show or imply correct common denominators eg, in part (a)   - $\frac{5}{10}+\frac{2}{10}$   - $\frac{1}{2}=\frac{25}{50}, \frac{1}{5}=\frac{10}{50}$   - $\frac{3^{1 / 2}}{5}$   eg, in part (b)   - $\frac{1}{4}=\frac{5}{20}$ seen with no attempt to change the denominator of the fraction $\frac{9}{20}$   - $\frac{1}{4}=\frac{20}{80}, \frac{9}{20}=\frac{36}{80}$   - The answer is a fraction equivalent to $\frac{1}{5}$   Convert correctly to decimals or percentages, even if their value is subsequently incorrectly converted back to a fraction   eg, in part (a)   - $0.5+0.2$   eg, in part (b)   - 0.45 and 0.25 seen	
	b	b	b	1 m	$\frac{1}{5}$	$\checkmark$ Answer as $\frac{1}{4}+\frac{1}{5}$
		c	c	2 m   or 1m	$\frac{5}{6}$ or equivalent fraction   Shows or implies the fractions are $\frac{1}{2}$ and $\frac{1}{3}$ eg   - $\frac{1}{2}+\frac{1}{3}$	$\checkmark$ Correct working and answer shown, but the two unit fractions are given on the answer line   $\checkmark$ Minimally acceptable implication eg   - $0.5+0.33$   $\times \frac{1}{1}$ as a unit fraction


Tier \& Question					Rearrange
3-5	4-6 5-7	6-8			
	14	10		Correct response	Additional guidance
		a	$2 \mathrm{~m}$   or 1m	Rearranges correctly to make $e$ the subject eg   - $e=\frac{p-2 f}{2}$   - $e=\frac{1}{2}(p-2 f)$   - $e=\frac{p}{2}-f$   - $e=-f+\frac{1}{2} p$   Expands the brackets correctly   eg   - $p=2 e+2 f$ seen   or   Divides by 2 throughout eg   - $\frac{p}{2}=e+f$ seen   or   Expands incorrectly to give $p=2 e+f$, then follows through correctly eg   p $=2 e+f$ (error)   and so $e=\frac{p-f}{2}$	$\checkmark$ Minimally acceptable correct rearrangement eg   - $e=(p-2 f) \div 2$   - $e=p \div 2-f$   $\mathbf{x}$ For $2 m$, incorrect equation   eg   - $e=\frac{1}{2} p-2 f$   $\times p$ incorrectly multiplied by 2 at the same time as the brackets expanded eg   - $2 p=2 e+2 f$   $\mathbf{x} e=\frac{p-f}{2}$ without previous working shown   As there is no way of knowing how many errors were made, do not accept
		b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Rearranges correctly to make $d$ the subject eg $d=c-2 r$   Shows $2 r-c=-d$ or $\frac{1}{2} d=\frac{1}{2} c-r$   or   As a correct first step, multiplies by 2 , or divides by a half, throughout eg   - $2 r=c-d$ seen   - $\frac{r}{0.5}=c-d$ seen   - $\frac{r}{1 / 2}=c-d$ seen	$\checkmark$ Minimally acceptable correct rearrangement eg   - $d=(2 c-4 r) \div 2$   - $d=c-\frac{r}{0.5}$   - $d=c-\frac{r}{1 / 2}$




Tier \& Question					MOT
3-5	4-6 5-7	6-8			
	16	13		Correct response	Additional guidance
	a	a	1 m	Lower value between 150 and 151 inclusive Upper value between 260 and 270 inclusive	
	b	b	1m   1 m	Correct straight line, ruled, within $\pm 2 \mathrm{~mm}$ at $(400,0)$ and $(0,400)$   Correct region, ie below the line, shaded	! Line not full length   Accept provided the line is at least of length to cross the white 'pass' section of the graph, and would not be more than $\pm 2 \mathrm{~mm}$ from $(250,150)$ and $(150,250)$   $\checkmark$ Only the white section on the graph within the correct region shaded   ! Follow through Accept provided their boundary is a straight line, ruled or unruled, with a negative gradient
	c	c	1m	Lower value between 200 and 201 inclusive Upper value between 260 and 270 inclusive	! Follow through from parts (a) and (b) Follow through can be awarded only if at least one mark was awarded in part (b), and their (b) allows follow through for two values of R   Mark follow through as shown below   Correct line in (b) and correct shading lower value: 200 to 201 inclusive upper value: their upper value from (a)   Correct line in (b) but no shading lower value: 200 to 201 inclusive upper value: their upper value from (a)   Correct line in (b), incorrect side shaded lower value: their lower value from (a) upper value: 199 to 200 inclusive   Incorrect line in (b), 1m for shading lower value: their lower value from the graph upper value: their upper value from (a)







Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Half	11
2				Robot	12
3				Computation	13
4				Olympic Games	14
5				Pictogram key	15
6				Two steps	15
7				Calculations	16
8	1			Areas	16
9	2			Signs	17
10	3			Angles	18
11	4			Factors	19
12	5			Thinking of rules	20
13	6			Car parking	21
14	7			Heights	21
15	8	1		Spinning	22
16	9	3		Interpreting algebra	23
17	10	2		Growing shapes	25
18	11	4	1	Halfway	26
19	12	5		Survey	27
20	15	6	2	Solving	28
	13	7	3	Dropping litter	29
	14	8	4	Negatives	31
	16	9	5	Puzzle	32
		10	6	Rectangle rest	33
	17	11	7	Mice	34
	18	12	8	Straight lines	35
	19	13	9	Egyptians	37
		14	10	Rearrange	38
			11	What number?	39
		15	12	Locus	40

Index to mark schemes

Tier				Question	Page
$3-5$	$4-6$	$5-7$	$6-8$		
		16	13	MOT	41
			14	Similarity	42
			15	Robotic	42
			16	Rectangles	43
			17	Oranges and lemons	44
			18	Prism	45

## NATIONAL

CURRICULUM
5-16

GCSE

GNVQ

GCE A LEVEL

## NVQ

First published in 2002
© Qualifications and Curriculum Authority 2002

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

## Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

